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Abstract. We consider the Euler equations with gravitational source term and propose a new
well-balanced unstaggered central finite volume scheme, which can preserve the hydrostatic balance
state exactly. The proposed scheme evolves a nonoscillatory numerical solution on a single grid, avoids
the time consuming process of solving Riemann problems arising at the cell interfaces, and is second-
order accurate both in time and space. Furthermore, the numerical scheme follows a well-balanced
discretization that first discretizes the gravitational source term according to the discretization of
the flux terms, and then mimics the surface gradient method and discretizes the density and energy
according to the discretization of steady state density and energy functions, respectively. Finally,
several numerical experiments demonstrating the performance of the well-balanced schemes in both
one and two spatial dimensions are presented. The results indicate that the new scheme is accurate,
simple, and robust.

Key words. Euler equations, well-balanced, unstaggered central schemes, finite volume meth-
ods, gravitational field

AMS subject classification. 65M08

DOI. 10.1137/140992667

1. Introduction.

1.1. The model. Many interesting physical phenomena are modeled by the
FEuler equations with gravitational source terms. These equations express the conser-
vation of mass, momentum, and energy, which take the form in two dimensions

pt+(pu) + (pv)y =0,
+ (pu® +p), + (puv)y = —poa,

( )+(p Ve + (pv? +p), = —pdy,

B+ (B +p)u), + ((E +p)v), = —pudy — pvoy.

(1.1)

Here, p denotes the fluid density, (u,v) is the velocity field, p represents the pressure,
and F = %p(u2 +v?) 4+ p/(y — 1) is the nongravitational energy which includes the
kinetic and internal energy of the fluid. Furthermore, v is the ratio of specific heats
and ¢ = ¢(x,y) is the time independent gravitational potential. When the variation
of the unknowns in the y-direction is negligible, one may find the one-dimensional
version of (1.1) by setting v and all the derivatives in the y-direction to zero, thus
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obtaining the system

pt + (pu)e =0,
(1.2) (pu)e + (pu® +p), = —pou,
By + ((E+pu), = —pugy.

Equation (1.2) has been used to study the atmospheric phenomena that are essential in
numerical weather prediction [2], and in climate modeling as well as in a wide variety
of contexts in astrophysics such as modeling solar climate or simulating supernova
explosions [11, 7].

The Euler equation with gravitation (1.1) amounts to a system of balance laws,

(1.3) U, + F(U), + G(U), = —S(U),
where
p ou pv 0
2
U= | - pu” +p . G= guv Cand S = Py
pv puv pv=+p PPy
E (E+pu (E+p)v PUDy + pUy

Here U denotes the vector of unknowns, F and G are the flux vectors, and S is the
source vector. The special case of S = 0 reads

(1.4) U, + F(U), + G(U), =0,

which is termed a system of conservation law.

It is well known that solutions of conservation law (1.4) and, likewise, solutions of
the balance law (1.3), can develop shock discontinuities in a finite time, independent
of whether the initial data are smooth or not. Hence the solutions of balance laws
(1.3) are considered in the weak sense and are well-defined as long as source S remains
uniformly bounded. Furthermore, these weak solutions may not be unique. Additional
admissibility criteria or entropy conditions need to be imposed in order to select the
physically relevant solution.

1.2. Steady states. An important issue which arises in connection with balance
laws such as the Euler equation with gravitation (1.2) is the simulation of their steady
states. A steady state for (1.2) is a solution that is constant in time, in which the
source term is exactly balanced by the flux gradient. The importance of near steady
state flows occurs in astrophysics, in particular, in the simulation of core-collapse
supernova explosions, where the nascent neutron star slowly settling to an equilibrium
albeit the explosion, taking place in a highly dynamic environment just above the
nascent neutron star, does not set in for another few hundreds of ms [7]. Here, the
interest is in accurate long term simulations of near stationary states.

For the static gravitational potential ¢(x), we are interested in preserving the
following stationary solution for (1.2): The velocity is zero, i.e., u = 0 and the pressure
exactly balances the gravitational force

(15) Pz = _p¢m-

The above steady state models the so-called mechanical equilibrium and is incomplete
to some extent as the density and pressure stratifications are not uniquely speci-
fied. Another thermodynamic is needed (e.g., entropy or temperature) to uniquely
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determine the equilibrium. Two important classes of stable hydrostatic equilibria are

given by constant entropy, i.e., isentropic, and constant temperature, i.e., isothermal,

respectively. As a concrete example, we will concentrate on the isothermal case [16].
In what follows, we consider a special steady state solution to (1.2),

with a constant temperature and zero velocity. For an ideal gas, we have the relation
(1.7) p = pRT,

where R is the gas constant and 7" is the temperature. Substituting (1.7) in the steady
state equation p, = —p@, yields

(18) p(z) = poexp (—%)

which essentially leads to the special steady state

(1.9)  p(x) = poexp (—%) u=0, p=pRT = RTpoexp (-%).

The simplest and most commonly encountered case in literature is the linear gravita-
tional potential field, i.e., d¢/dx = g, with the corresponding hydrostatic balance

(110) p({lj) = pPo exp (_w>7 u = 0’ p= pRT = pg exp (_ngx) )
Po Do

The importance of steady states such as the above equilibrium (1.10) lies in the fact
that in many situations of interest, the dynamics is realized as a perturbation of
the steady states. As examples, consider the simulation of small perturbations on
a gravitationally stratified atmosphere such as those arising in numerical weather
prediction [2] and the simulation of waves in steller atmospheres [11, 6]. We mention
that more general steady states (e.g., the polytropic case [20]) can’t be handled directly
by the method developed in this article, and will be the topic of an upcoming paper.

1.3. Well-balanced schemes. A challenge in the numerical analysis of balance
laws is to maintain these steady states, and to compute their perturbations accurately.
Indeed, if a scheme cannot balance the effects of convective fluxes and source term, it
may introduce spurious oscillations near equilibria, unless the mesh size is extremely
refined. Many astrophysical problems involve the hydrodynamical evolution in a grav-
itational field, therefore, it is essential to correctly capture the effect of gravitational
force in the simulations, especially if a long-time integration is involved, for example,
in modeling star and galaxy formulations. Standard numerical schemes with naive
discretizations of the source term might not preserve the steady state. This implies
that the scheme does not keep a discrete form of (1.10) stationary in time. The error
can be at least of the order of truncation error for each time step and can lead to large
deviations from the steady state for long-time scales. Furthermore, computing small
perturbations of (1.10) is not possible due to lack of balancing. A numerical scheme
which preserves a discrete version of a steady-state-like (1.10) is termed well-balanced
with respect to the steady state. Well-balanced schemes are essential for computing
perturbations of steady states.
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Well balanced schemes for systems of balance laws (1.3) are still undergoing exten-
sive development. In fact, the pioneering paper of LeVeque [12] was one of the first to
propose a well-balanced scheme for the shallow water equations with bottom topogra-
phy. Then a variety of well-balanced schemes have been designed to approximate the
ocean at rest steady state that arises in the shallow water equations with non-trivial
bottom topography. A very limited list of references includes [11, 1, 3, 9, 10, 15] and
other references therein. Furthermore, LeVeque and Bale [13] proposed the quasi-
steady wave propagation methods for an ideal gas object to a static gravitational
field. A Riemann problem is introduced in the center of each grid cell such that the
flux difference exactly cancels the source term. A different strategy for the construc-
tion of well-balanced discretizations with respect to dominant hydrostatics has been
proposed by Botta et al. [2] for the nearly hydrostatic flows belonging to a certain
class of solutions. A well-balanced scheme that preserves a discrete version of some
hydrostatic steady states of (1.2) has been presented in [6, 11, 13, 16].

The key principle underlying the design of most of the aforementioned well-
balanced schemes consisted of replacing the piecewise constant cell averages, used as
inputs to finite volume schemes, with values constructed from a local discrete hydro-
static equilibrium. This results in a first-order scheme. The design of a second-order
scheme requires using a well-balanced piecewise linear reconstruction with respect to
the local discrete hydrostatic equilibrium. Recently, in [8], well-balanced high-order
finite volume schemes were designed which preserve discrete equilibria, corresponding
to a large class of physically stable hydrostatic steady states.

Finally, we mention the paper by Desveaux et al. [5]. They developed an approx-
imate Riemann solver using the formalism of Harten, Lax, and van Leer, which takes
into account the source term. The well-balanced solver is based on a finite volume
method, where the source term is somehow incorporated into the Riemann solver.
The resulting numerical scheme was proven to be robust, to preserve exactly the hy-
drostatic atmosphere, and to preserve an approximation of all the other steady state
solutions.

1.4. Aim of this paper. We aim to develop a new unstaggered central scheme
which is an unstaggered adaptation of the Nessyahu and Tadmor [14] scheme. Briefly,
this new method is based on a careful projection of the numerical solution obtained on
the staggered cells, back onto the original cells. In this paper we construct, analyze,
and implement a new unstaggered, well-balanced, nonoscillatory, and second-order
accurate central scheme for the one- and two-dimensional systems of Euler equations
with gravitation. Two main features characterize the proposed well-balanced schemes:
first a special discretization of the source term according to the discretization of the
flux divergence and, second, a proper projection of the numerical solution obtained
on the dual cells, back onto the original cells. The latter step is performed according
to the surface gradient method discussed in [17, 4].

The main advantages of the proposed schemes are

(a) it is a second-order accurate approximation of the one- and two-dimensional

systems (1.2) and (1.1). It is a second-order accurate approximation of the
one- and two-dimensional systems (1.2) and (1.1);

(b) it enjoys the simplicity of the Riemann-free-solver approach;

(c) it is well-balanced; exactly maintains the steady state requirement at the

discrete level.

The proposed well-balanced scheme is successfully applied and classical FEuler
equations with gravitation problems are solved, both in one and two space dimensions.
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The steady state requirement is exactly satisfied at the discrete level and the obtained
numerical results are in good agreement with corresponding ones appearing in the
recent literature, thus confirming the potential of the proposed method.

The rest of the paper organized as follows: The well-balanced, unstaggered, finite
volume one-dimensional scheme is presented in section 2, and the two-dimensional
scheme is presented in section 3. Numerical results are presented in section 4 and
finally a brief summary of this paper is presented in section 5.

2. Schemes for one-dimensional Euler equations with gravitation. In
this section we develop a second-order accurate central unstaggered well-balanced
finite volume method for the Euler equation with gravity systems that preserves the
steady state requirement of type (1.9) in the case of a linear gravitational field (1.10):

(2.1) p =exp (—gx), u=0, p = exp (—gz).

Remark 2.1. Note that, in general, the steady state requirement (1.10) can be
recast as follows: For any a, 5 > 0,

p=aexp(—fgr), wu=0, p= %exp (—Bgx).

In this presentation we have chosen to work with a = 8 = 1 to avoid unnecessary
redundancy.

We first rewrite the source term following the approach proposed in [16] and
reformulate the Euler equation with gravity system (1.2) as follows:

(2.2) {“t + f(w), = S(u), z€Q, >0,

u(z,0) = ug(z),

where 2 C R is a bounded spatial domain, and

p pu 0
u=(pu],fu)=(pu’+p)]|,andS(u)= | pexp(gz) (exp(—gz)),
E (E+plu puexp(gz) (exp(—gz)),

Here we have replaced the gravitational source term —pg by pexp(gx) (exp(—gx)),,
and also the term —pug is treated in a similar fashion. The main advantage of such a
change is to let the source term and the corresponding flux term enjoy a similar form
in the case of a steady state solution.

2.1. The grid and notation. We start by introducing some notation needed
to define the fully discrete finite volume schemes. Throughout this paper we reserve
Ax and At to denote small positive numbers that represent the spatial and temporal
discretization parameters, respectively, of the numerical schemes. Given Ax, At > 0,
let D+, Dy denote the discrete forward, backward and central differences, respectively,
in spatial direction, i.e.,

Dag(r) = £ 5 (g & Az) — 9(a),

Dug() = 3 (Dyg(x) + D_g(a).

for any function g : R — R admitting point values. For i € Z, we set z; = iAx and for
n=1,...,N, where NAt = T for some fixed time horizon T" > 0, we set t" = nAt.
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For any function ¢ = g(x) admitting point values we write g; = g(z;), and
similarly for any function h = h(x,t) admitting point values we write hl = h(x;, t™).
Moreover, we introduce the spatial and temporal grid cells

Ci = [Tiy1/2,Tiv1y2ls  Diprya = [i, wita], and R 5 = Dy X L, e,
where 211/ = 2; £ Ax/2 with Az = 211/ — 2;_1/2 = Tiy1 — T;.

Furthermore we introduce the average and, respectively, the jump of any grid
function p across the interfaces z; +1 and x;:

__pitpin _ Pipl P o n
Pitl = 9 Pi = — 9 [[Pﬂzur% = pit1 — pi, [pli = Pitl — Pi-1-

Finally, we shall also use following notations for the steady state density function
(cf. (2.15)):

S S
C1 P
s —5 . ler% pl*%
i1 Pi = - 9

2.2. One-dimensional scheme. To this end, we construct an unstaggered cen-
tral scheme which preserves the steady state requirement (2.1). This method we de-
velop computes the numerical solution on a single grid but uses “ghost” staggered cells
to avoid the resolution of the Riemann problems at the cell interfaces when updating
the numerical solution. Piecewise linear reconstructions of the numerical solution de-
fined at the center of the ghost cells send back the updated solution to the original
grid.

In what follows, without any loss of generality, we assume that the numerical
solution u} to system (2.2) is known at time " at the centers z; of the control
cells C;. To construct the numerical solution u't! at time ¢"*! = " 4+ At on the
control cells C;, we shall follow a standard finite volumes procedure; we first define the
piecewise linear interpolants £;(z,t™) that approximate the exact solution u(z, t") on
the cells C; as follows:

Ry _ 0 (ui?)’
(2.3) Li(z,t") =u} + (v — ;) Ve e C;
Ax
where (ul)’/Ax is a limited numerical gradient that approximates the spatial partial
derivative %u(x,t”)h:m. Throughout this paper, we have used van Leer’s mono-
tonized centered limiter (MC-6), where the slope of the reconstruction is chosen as

B uzlfl n
7 el

(u}") = minmod {0[[u]]’?_l, Hit1

where 6 is chosen such that 1 < 8 < 2 and the minmod function is defined by

) sign(a) min{|al, |b],|c|} if sign(a) = sign(b) = sign(c),
minmod(a, b, c) = {O otherwise

It is worth mentioning that to overcome the disadvantage of excessive numerical vis-

cosity, present in the case of first-order piecewise constant interpolants, we use high
resolution MUSCL-type interpolants (2.3). We now integrate the balance law (2.2) on
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the rectangle R, | Y12 and apply Green’s theorem to the integral on the left to obtain

J fy, e san= [ [ s
]gm (F(u)dt — udz) /tn+

1z+1
/ u)dzdt.

Performing elementary calculations, we obtain

(24) _/%Ml u(:c,t")dx—f—/tn f(u(@ita, ))db‘—I—/Ii+1 u(z, " dr

tn+1 tn+1

z+1
- / f(u(ax;,t))dt = / / u)dzdt.
in in

Assuming that the solution u(x,t"*!) ~ L(z,t"*!) is a piecewise linear function
defined at the center of the cells D; /5, the mean-value theorem leads to

i+1
/ u(z, t"dr = Az L(x l+1,t"+1) = Azx u::rll
T4 2

On the other hand the solution u(z,t") ~ L(z,t") is a piecewise linear function
defined at the center of the cells C;; the mean-value theorem leads to

Tit1 Tit1/2 Tit1
(2.5) / u(z, t")dz = / u(z, t")dz + / u(z, t")dx

i Tiy1/2
Az Az n n
= 751'(%4%775 )+ TQH( i3, 1") = Ar

Therefore, the forward projected solution u?+ , at time t" is calculated as follows:
(2.6)

2
u1+% = 3 (ﬁl (331 + T,t > + Liv1 (331'4_1 — T,t >) 1+1 — g[[(u )Iﬂi+%'
Substituting in (2.4), we obtain

1 tn+1 tn+1
9.7) uwttl=u", — = : _
( 7) uH_% u1+% Az ln f (u(a: +1, t)) dt lﬂ

f(a(zi, 1)) dt]

tn+1 1+1
/ / u)dzdt.
+1

We see from (2.7) that the numerical solution uzrl, computed at time "1 is ob-
2

tained at the center of the control cells D;_ /5.
On the other hand the flux integrals in (2.7) are approximated with second-order
accuracy using the midpoint quadrature rule, leading to

tn+1

‘L+1
u?yy, — AtDy f(u n+2 / / t)) dxdt,

=

n+1l __
(2.8) u =
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where the predicted solution values at time t"+1/2 are obtained using a first-order
Taylor expansion in time as well as the balance law as

(2.9)
1 At At
u(z;, t”+§) ~u(z;, t") + 7ut(fvi, ") ~ul + — ( — f(u)w|(m)tn) + S(u)|(zi,t"))

2
At Ji + Sn) =t

Nui+7(_Ax *

where f//Ax is an approximate flux derivative and S ~ S(u}

?) is a second-order
approximation of the source term at time t™ on the cell C; and is defined using a

sensor function as follows:
(2.10) Si' =S +S'r+ Sic
with

p _s1=s)(2=s) )

L = 5 0p} exp(gzi)D—(exp(—gzi)) |,
Opiul exp(gz;)D_(exp(—gz;))

0
0p7 exp(gai) Dy (exp(—gzi)) |,
0p} u exp(gz;) D (exp(—gz;))

" s2(1+s;)(2—s;)
iR — 2

0
pi exp(gx;) Do(exp(—gz;))
piug exp(gr;) Do(exp(—gw;))

no_ Si(sitD(si—1)
1,C 6

Note that the sensor function s;, appearing in the discretization of the source term,
forces the discretization of the term “(exp(—gx)),” to follow the same discretization
of the term p, which appears in the flux function, and is defined by

—1 if p;=0D_p;,
1 if p; =0Dyp;,
0 if p, =0,

2 if p; = Dopi,

(2.11) 5 =

where 1 < 6 < 2 is the parameter of the MC-0 limiter. For further information on
sensor functions, the interested reader is referred to [4], [21], and [22].

As for the integral of the source term in (2.8), it is also approximated with second-
order accuracy using centered differences and the midpoint quadrature rule as follows:

tn+1 Tit1 n+l n+l
. / S(u(z,t))dr dt ~ At Az S(u; >, u;,,)
with
0
Lol pENSY R——
(2.12) St By = | T2 explgw)],,y Dy exp(—gxi)

P12 exp(ga)|,, Ty Dy exp(—gzi)
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Finally, we proceed with a backward projection step of the obtained numerical
solution u;fll/z back onto the cells C; and generate the numerical solution u?“ as
follows:

1
(2.13) utt =artt - g[[(u""’l)’]]i,

K2

n+1
i+1/2

partial derivative a@u(x,t”“)h:z*l. This finishes the description of the central
Ty

where (u )" denotes a limited numerical gradient that approximates the spatial

T
finite volume scheme.

To show that the proposed finite volume scheme (2.13) preserves the steady state
(2.1), we first show that u?jllﬂ = u},,,,. In that context, we have the following
theorem.

THEOREM 2.1. Let the numerical solution u}' of the one-dimensional Euler equa-
tion with gravity system be updated using the finite volume method (2.8) and (2.13).
Moreover, assume that at time t" the steady state requirement (2.1) is satisfied by u?,
i.€.,

(2.14) ugf =0 and p} =exp(—gz;) =Dp;.
Then,
(a) the predicted solution given by (2.9) satisfies u?H/Q =ul;

(b) the forward projected solution given by (2.8) and (2.12) satisfies u;‘;rllﬂ =

u? .

i+1/2
Proof. To prove (a), we first recall that the prediction step is obtained from (2.9).
Observe that if, for example (p,)? is discretized by the MC-6 parameter using the
backwards difference, i.e., p, = 0D _p;, then the sensor function s; takes on the value
—1, and the discretized source term becomes S;* = S';. Furthermore, since u}
satisfies the steady state requirement, then u} = 0 and therefore the first and third

components in the flux divergence as well as in the source term in (2.9) are zero. Thus
the first and third components of ufﬂ/ ? are the same as those of u’. The second

component of u?ﬂ/ % is computed as follows:
n+1/2 n At / n
(pu); = (pu)i + = (=pi + pi’ exp(gz:)0D— exp(—ga:))
At
= (pu)! + — (—0D_p} + p} exp(gx;)0D_ exp(—gx;)),

2

and since u? satisfies the steady state requirement (2.14), then

n o At n n
()1 = (pu)} + 550 (~D-pff + D_exp(—ga:)) = (pu)}.,

and therefore we conclude that u?H/ 2= u? holds.

Next we move on to the proof of (b), i.e., we show that u”'!

i+1/2
the solution u? satisfies the steady state requirement (2.14). From (2.8), we know
that

uy /2 provided

At 1 1 1 1
1 n+ n+ n+ n4+

U?j% = u?+1/2 T Az f(ui+12) = flu; 7 2)| + AtS(u; "2, ui+l2)'
n+1/2 _

But since u, u}, then the first and third components of the flux as well as
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the first and third components of the source term are all identically zero. This means

that the corresponding first and third components of both u” !} and u;' , are equal.
2 2

i+
As for the second component of u;l:ll, it is updated as follows (keeping in mind that
2
+1/2 +1/2
PR = g = pr = pi = exp(—gay)):
n+1 n+1/2

(pw)iy e = (pu)iyy /o — AtDyp; + At prt1/2 exp(gx)|i+% D exp(—gw;)

= (pu)iq /2
Thus we conclude that whenever the numerical solution u} satisfies the steady state
requirement at time ¢”, then the updated numerical solution u;fll/z on the staggered

n+l u?+1/2 for all 3. a

i+1/2 T

Observe that from Theorem 2.1, it is easy to conclude that if the steady state
requirement was satisfied at the discrete level at time t™ at the center of the cells Cj,
it will remain as such at time t"*! but only at the center of the staggered cells D;_ /2-
However, the back projection step prescribed in (2.9) fails, in general, to fulfill the
steady state requirement at time ¢"*! at the center of the cells C; and therefore an
additional treatment is required. In this presentation, we extend the surface gradient
method [17] initially developed for the shallow water equations in [4, 21], and later
adapted for the Ripa system in [22], to the case of systems of Euler equations with
gravity.

Since in the steady state case the velocity component is zero, the forward and
backward projection steps based on the surface gradient method will be performed
to both the first component p and and third component E of the numerical solution
u}’. We first assume that the numerical solution u}’ obtained at time ¢" satisfies the
steady state requirement (2.14) and we define the steady state density function p; 12

dual cells D; /o remains unchanged, i.e., u

at the interfaces of the cells C; (or at the centers of the cells D; 1 /5) needed for the
forward projection of p} and E}'. Similarly, we define the steady state energy function
E?, 1/, needed for the forward projection of third component Ej*. We first describe
the forward projection step of the first component p! and then we argue similarly for
the third component E'. In what follows, knowing p? 12 at the points z; /o we

linearize the steady state density function p® on the cells C; as

() = pf 4 (g — 2] .
(2.15) p*(z) = pi + 1o (@ = zi)pli Yz € Ci.

Note that at the cell centers the relation p; = p; remains valid. Since both p" :
C; — R and p® : C; — R are linear on the control cells C;, we follow the surface
gradient method and define the function H(xz) = p"(x) — p®(z). The linearization
H(z) = H; + H(x — x;) on the cells C; is obtained by using a limiting procedure of
the numerical derivatives of H; = p}’ — pJ. We then calculate the numerical gradient
(p™) indirectly using both p; and H; as follows:

(2.16) (o1)' = H, + 5ol

Similarly, for the projection step of p;fll/z

we consider the surface gradient method and linearize p

back onto the original cells C; at time "1,
n+1
Lo i+1/
Hii1)2 = pil /2~ Pir1 /2 and calculate the numerical gradient (p

(2.13)) as follows:

3 ~s
5 in terms of Piii/2 and
n+1

it1/2) (required in

1
n+1 s
(2.17) (pi_:_l/g)/ = Hz{+1/2 + E[[pﬂi+%’
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where p7 | , is the corrected steady state function value on the staggered cells D; 1 /2
defined as follows:

s S 1 S —S 1 s —s
(2.18) Piv1/2 = Pit1/2 — 5 (Pz‘+1/2 - Pi+%) = ) (Pi+1/2 + Pi+%) .

The reason for this correction in the steady state density function is due to the fact
the steady state is linear only on the cells C; but not on the cells D; /5.

The forward and backward projection steps of the energy component follow a
similar procedure. For the forward projection step we linearize the energy E* using
the function H; = EJ* — E; and calculate its numerical gradient as follows:

1
(2.19) (B) =H; + L
while for the back projection step the linearization is performed using the corrected
values of the steady state energy E; /2,

n 17/ 1 s
(2.20) (Ei4j11/2)/ = ;+1/2 + E[[p]]wév

where 7:21-“/2 = Ez’fll/Q — EfH/Q and EfH/Q is the corrected steady state energy on
the dual cells

s s 1 s N 1 s s
(2.21) B = Eiyiye — D) ( i+1/2 T Ei+%) 9 ( it1/2 T Ei—i—%) :
We are now in a position to state and prove the theorem that confirms preservation
of a discrete version of steady state (1.10) by the approximate solution u}.

THEOREM 2.2. Let the approzimate solution uf of the Euler equation with gravity
system (2.2) updated using the finite volume method (2.8) and under the hypotheses
of Theorem 2.1 along with the surface-gradient-based forward projection step (2.6),
(2.16), (2.19) and backward projection step (2.13), (2.17), and (2.20). Then the
scheme (2.8) has the following properties:

(a) Accuracy: It is a second-order accurate approximation of the Euler equation

with gravity system (2.2).
(b) Well-balanced: It preserves the steady state (1.10), i.e., if ul satisfies (1.10)
then the updated solution ul'*' also satisfies (1.10).

Proof. First, we mention that second-order accuracy of the scheme is guaranteed
if the numerical gradient vector satisfies

1, 0
A= %u(x,t)u:m + O(Ax).

In fact, a straightforward truncation error analysis shows that the local truncation
error is O(Axz?) which confirms (a). To prove (b), we first calculate the forward
projected solution p?+1/2 using (2.6),

(2.22) Piaje =Pivy — 5 L") vy,

where (pI')’ is a numerical gradient obtained using (2.16). Taking into account that
p? = pf, then H/ vanishes and (2.22) becomes

n —Nn 1 S S
(2.23) Pit1/2 = Pigl — 3 ([[P]]i+1 - [[Pﬂz) )
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but since pj, ,, is assumed to be linear inside the control cells Cj, then [p]; =
2(,0er1/2 —pf)=2(p; — 9571/2)7 thus (2.23) becomes

n —n 1
(224) pi+1/2 = pi+% + 5 (pz+1/2 z+ )

n+1

Next, the back projection of Pit1/2

is performed using (2.13) as follows:

(2.25) pptt=pitt — ?[[(P L,

where (p?-:_ll/Z)/ is calculated using the corrected steady state density function as

described in (2.17). Note that (2.18) and (2.24) yield

(2.26)

1

1 ~ ~ _ ~

Hij1/2 = p?-:rl/z - pf+1/2 = P?+1/2 - Pf+1/2 = PZ_% =+ 3 (pz+1/2 H_ ) — ,Of_H/z
_ _ 1 1

Equations (2.17), (2.25), (2.24), and (2.26) give
o —n Az s
= = S L= - 5 (Il — D)

1/, 1 1/, .
= 5 <PZ+§ + 5 (pz+1/2 1+ ) +PZ_, + 5 (pi—l/Z - pl_;))
1 S 1 T
3 ([[p]]ip [[p]]l,,) 5o +p7) = pis

because the steady state (2.14) is maintained at time t" and thus p ; — pf_; =
PP = Pi = Py — Piyr = 0.

To keep the presentation fairly short we have only provided details for the com-
ponent p. However, we note that the same proofs apply mutatis mutandis also for the
component E. Hence, we conclude that E"Jrl E?. a

3. Schemes for two-dimensional Euler equations with gravitation. In
this section, we develop a second-order accurate central unstaggered well-balanced
finite volume method for the Euler equation with gravitation system in two space
dimensions (1.1). Note that the hydrostatic balance we would like to preserve at the
discrete level is the constant temperature and zero velocity steady state solution,

_ ¢ o ¢
(3.1) p—poexp( RT)’ u=v=0, p=pRT = RTpoexp( RT)

and the steady state solution corresponding to the linear gravitational potential field,

@ = and @ =
dr g1 dy = g2
takes the form
(3.2) p = exp(—(g17 + g29)), u=v=0, p = exp(—(g17 + g2y))-
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As before, the gas dynamics equations (1.1) can be reformulated in the form of a
balance law as follows

(3.3) u; + 0 f(u) + 0yg(u) = S(u), (z,y) €Q,t>0,

where 2 C R? is a bounded spatial domain, and

p gu pU
_ | pu _ | pu®+p _ puv
u= p’U ’ f(ll) - pUU ) g(u) - p,UQ + D ) a'nd
E (E+pu (E +p)v
0
pexp(g17 + g2y) (exp(—g17 — g2y)),
S(u) = pexp(g1z + g2y) (exp(—g1z — g2y)),, ’

exp(g12 + g2y) (pu (exp(—g17 — g29)),, + pv (exp(—g1z — gzy))y)

along with the initial condition u(x,y,t = 0) = ug(z,y) for all (z,y) € Q.

3.1. The grid and notation. We start by introducing some notation needed to
define the fully discrete finite volume schemes. We reserve Az, Ay, and At to denote
small positive numbers that represent the spatial (in = and y directions respectively)
and temporal discretization parameters, respectively, of the numerical schemes. Given
Az, Ay, At > 0, let D%, DY ,Dg D§ denote the discrete forward, backward, and
central differences, respectively, in spatial directions, i.e.,

Dig(z,y) = iA%, (9(x + Az,y) — g(z,v)), Dig(x,y) = 5 (Dig(x,y) + D g(x,y)),

Dig(z,y) = L L (9(z,y £ Ay) — g(x,y)), Dig(z,y) = = (DYg(x,y) + DY g(z,y))

Ay

N = N =

for any function g : R x R — R admitting point values. For ¢,j € Z, we set x; =
iAx,y; = jAy and for n = 1,..., N, where NAt = T for some fixed time horizon
T > 0 we set t" = nAt.

For any function g = g(z,y) admitting point values we write ¢; ; = g(zi,y;),
and, similarly for any function h = h(z,y,t) admitting point values we write h'; =
h(z;,y;,t™). Moreover, let us introduce the spatial and temporal grid cells

Cij = [Tic1y2, Tiy1/2] X Wi—1/2,Yjs1/2)s  Digiy2,j+172 = [T, Tiva] X [y5,Yj+1],

and Ry /55172 = Diyajagriye X [0 077,

where z;41/0 = 2 £ Ax/2, yj11/0 = y; £ Ay/2 with Aw = 2,10 — 2170 = Tip1 — 5
and Ay = Yj+1/2 — Yj—1/2 = Yj+1 — Yj-

Furthermore we introduce the jump and, respectively, the average of any grid
function p across the interfaces z; 1Yl T, and y;:

_ Pij + Pij+1 Pty — P+l T P-4
1= 1= = = -
Pij+1 B) v Pitdgt D) v PG 5 ,

_ PivitPi-1,
Payg =5 Plijey = pigrr —pigs lPlivy ;= pivrs = pig,

Lisi) = Pijrs — Pij—ts [Pl = Pixs; — Pici
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3.2. Two-dimensional scheme. Following the same strategy, as explained for
the one-dimensional scheme, we construct an unstaggered central scheme which pre-
serves the steady state requirement (3.2). To do that, we assume that the numerical
solution u} to system (3.3) is known at time ¢" at the centers (z;,y;) of the control
cells C; ;. To construct the numerical solution u}™" at time "+ = " + At on the
control cells C; ;, we shall follow a standard finite volumes procedure; we first de-
fine the piecewise linear interpolants £; ;(z,y) that approximate the exact solution of
system (3.3) on the cells C; ; as

- WYy
(34)  Lij(z,y,t"):=u; + (z - xi)A—x +(y — yj)A—y V(z,y) € Cij,
where (u;")'/Az and (u;’}")’/Az are limited numerical gradients that approximate

i
the spatial partial derlvatlve a%u(x,yj,t")h:wi and a%u(xi, Y, t")|y=y,, respectively,

using the van Leer’s MC-6 limiter. Next, we integrate the balance law (3.3) on the

rectangular box Rz+1/2 j+1/2 to get
(3.5) / (O + 0, f(w) + B,g(w)) dV = / S(u)dv.
Riv1/2.41/2 Ri1/2.41/2

Invoking Green’s theorem and taking into account that u(z,y) = £;j(z,y) on the
cells C; ;, we obtain

tn+1

n+1 .
(3.6) wh = 1+2]+2 A;vAy " - (u) - n, dAdt

tn+1

AxAy/ /BD (u) -ny,dAdt

+%
AxAy/// W

where (n,,n,) is the outer unit normal vector to dD; /3 j+1/2- The integral of the
source term is approximated to second-order accuracy using the midpoint quadrature
rule

+%

n+2 n+% n+% n+%
///n u)dV ~ AtAxAyS( N NI | R CAR

Expanding the spatial flux integrals in (3.6) and applying the midpoint quadrature
rules to the time integrals we obtain

n u” A T n+ . n+i
(3.7) “z++21,1+2 Yipljvd — [D+f( ®)+ D+f(“zyj+21)}
At n+ n+l
-5 [DYeal ) + Do)

nts nty nty o ndg
+At'5(“z‘,j Wit Wi Wign g

where uj, ), ;5 is the projected solution at time ¢" on the staggered dual cells
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Diy1/2,j41/2, and is evaluated using a Taylor expansion in space as follows:

n 1 —n
(3.8) Uii1/2,54+1/2 = 3 ( ;tua uH__ j+1)
Ax n,r n,r
BT ([[u iz + o™ ﬂz‘+%,j+1)
_ Ay

([T + 10154 -

The solution at time "1 on the cells C}; of the original grid is then obtained using
a back projection step as follows:

1
n+1l __ —n+l —n+1
(3.9) ul'’t 5( Gl )
Am n xT n x
16 ([[ i liyj-1 +u o Ty, s+ 1 )
AV n
16 A R L

n+l,x / n+1l,y /
where (w1 /5 i1 )0) it1/2,541/2)

that approximates the spatial partial derivative %u(x,yj +%,t”+1)|zzm

and (u denote a limited numerical gradient

i+l
and %u(xH; Y, t"+1)|y:yA y respectively.

n+1/2

On the other hand, the predicted solution values u, i at the intermediate time

step t"1/2 in (3.7) are estimated using a first-order Taylor expansion in time and the
balance law (3.3):

ntl At I
3.10 L e (L N1 T
(3.10) i +2( Ar Ay w0

where f;;/Az and g ;/Ay are approximate flux derivatives and S?'; =~ S(u};) is
a second-order approximation of the source term at time ¢ on the cell C;; and is
defined using a sensor function as follows:

S1=0
n SZ
(3.11) s~ o |
S
where
P exp(giz; + g2y;)O DT (exp(—g1w; — gay;)) if s2 = —1,
0 if 55 =0,
(312)  Sh={ i o
pi; exp(g1z; + g2y;)O DY (exp(—g17; — g2y;)) if s2 =1,
pi;exp(g1z; + g2y;) D§ (exp(—g1z; — g2y;))  if s2 =2;
P} exp(g1i + gay;)ODY. (exp(—g1wi — gayy)) if s3 = —1,
S 0 if S§3 = 0,
3 = .
Pij exp(g17; + 92y;)ODY (exp(—g1z; — gay;)) if s3 =1,
Py exp(g1w; + gay;) DY (exp(—g1zi — g2y;))  if 53 = 2;

S4—U SQ""U Sg
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Note that the above parameters sy and s3 are two sensor parameters that force
the discretization of (exp(—g1z — g2y)), and (exp(—g1z — g2y)), according to the
discretizations of p, and py, respectively. They are defined as

—1 if (pf;) = ©Dp; —1 if (p!;) = ©DYpi
0 if(p=) =0 0 if (p/;) =0

(3.13) s2= ) (p;j) 7 z and s3 = 1 (p;/)j)/ 7 y
1 if (pm) =0D%p;;, 1 if (pi)j) = 0OD!p;;,
2 if(pf;) = Dfpi;- 2 if (p};) = Dipi;

The parameter 1 < © < 2 appearing in the formulas for Sy and S3 is the MC-©
limiter parameter.

Finally, we discretize the integral of the source term in using the midpoint quadra-
ture rule in order to ensure second-order accuracy both in space and time:

S1=0
n+di nt+l 4l gl S
(3.14) S(ug; w2 w2, W) = S3
S
with
Sl = 07
1 T1/2
Sy = 3 pm exp(g1x +92y)|z+ JD exp(—g12; — g2Y;)
+ pn+l/2 exp(glx + ng)‘i+%,j+1Di exp(—glari - QQyj+1)>7
1 12 Yy
S5 = 5P exp(g1z + ng)|i7j+%D+ exp(—g12i — g2y;)
+ "2 exp(gre + g2y) 4 5y 2 DY (=12 — g2yj)>’
1 _n+1/2
Sy = 2 (pnﬂ/? exp(g1x +923J)|z+ Ju?Jr "2D% exp(—g13; — g215)

—n+1/2
+ pnt1/2 exp(grz + g2y)‘i+%,j+1u?+§,/j+1Di exp(—g12; — g2yj+1)

‘ n-‘rl/QDy

+ p"t1/2 exp(g12 + g2y) R TELI exp(—g1%; — g29;)

_n+1/2 y . ) _ )
g T DL oD it — g

+ P2 exp(gia + g2y)

Note that special discretization of the source term will help us to show that the

updated solution uzfl /2,j41/2 at time t"*! is equal to the forward projected solution
i+1/2)j+1/2 at time t"™. In fact, we have the following theorem.

THEOREM 3.1. Let the numerical solution ui'; of the two-dimensional Euler with

gravity system be updated using the finite volume method (3.7) and (3.9). Moreover,
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assume that at time t" the steady state (3.2) is satisfied by u;'; at the discrete level,
i.€.,

(3.15) pi; =Dpi; =exp(—g1x; — g2y;) and wu; =v;'; =0.
Then,
(a) the predicted solutions given by (3.10) satisfy u; +1/2 = u?J ;

(b) the solutions given by (3.7) and (3.8) satisfy uH_l/2 ir1/2 = Wihiya iv1ya

Proof. To prove (a), we proceed componentwise. In what follows, we first show

that pn+1/2 = pi;. From (3.10) we have (keeping in mind that u;
equlhbrlum state)

=o', =0in an

2J 2J

Pi, ;F1/2 = Pij + 7 [ ((pu)l] )/ ((pU)Z 7;/) + Sl:| = Pig:

n+1/2

Next, we show that (pu), = (pu)f;. Again from (3.10) and taking into account

i,
that ui; = v'; = 0 in the case of an equilibrium state, we obtain
n+1/2 n At 2 n,x\’/ Y
(pu);; '~ = (pu)it; + o ((pu +p)i; ) — ((PUU)” ) + 52
(3.16) At

= (pu)i; + - [— (vf;) + 52} :

If (pf j)/ is discretized using the backwards difference (i.e., s, = —1 in (3.13)), then
(3.12) leads to

Sy = pijexp(g12; + g2y;)O DT exp(—g1z; — g2y;).

Then using (3.15), (3.16) leads to (,ou)?jl/2 =0 = (pu)};. In a similar fashion, we

show that (pu)?jl/ >=0= (pu)i; if s2 takes other values. We argue similarly to
show that (pv)?jl/z =0=(pv)};-

Finally, we have to show that E"H/2 = E7';. In fact, from (3.10) and (3.15) we
obtain

= By S [ ) - ) 5 = E

This concludes the proof of (a).
To prove (b), we also proceed componentwise. Observe that, from (3.7), (3.14),
and (3.15) we have

At
n+1 T n+1/2 x n+1/2
sz:rl/2,j+1/2 = Pit1/2,j41)2 — [D+(Pu)i,j + Di(pu); ;11 ]

Ay n+1/2 n+1/2 n

o {Du (p ) 2+ DY (PU)z+1§ + AtS = Pit1/2,5+1/2"
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Likewise we have

(3.17)
At +1/2 +1/2
(pu)?:11/27j+1/2 = (pu)?+1/2,j+1/2 T [Df_(plﬁ +p)?,j / + Di (pu2 +p)Zj+{
At| n+1/2 y n+1/2
-5 D (puv); ;' + Di(puv);i; 5~ | + AtSs.
Keeping in mind that the predicted solution is invariant in time (uZ;rl/ 7= qu) and

equilibrium condition (3.15), the term Sz can be rewritten as

1 z nt+1/2 r n+1/2
Sy = B (D+pi,;r / +D+pi,;_+{ )

Therefore (3.17) becomes

At
n+1 n xr n+1/2 x n+1/2
(pu)ijl/2,j+1/2 = (Pu)ii1/2,541/2 — o5 <D+pi,j 24 D+pi7j+{ ) + AtSs

= (PU)?+1/27J*+1/2-
Similarly, from (3.7), we have

(3.18)

" " At n+1/2 n+1/2
(PU)ifll/sz/g = (pv)i+1/2,j+1/2 Y [D%{-(Pvz +p)i,j / + Di(mﬁ +p)i+l,§

At T n+1/2 n+1/2
-5 {D_F(puv)ij 24 Di(puv)i;ﬁr{ + AtSs.

. . . . +1/2
Again, keeping in mind that u? j

S3 can be rewritten as

= u}; and equilibrium condition (3.15), the term

1 n n
S3=3 <D i DiPiI%Q)

Therefore (3.18) becomes

(PU)?:ll/z,jJrl/z = (V)12 54172 — % [D.‘T{_pzzrlm + Dip;fﬁéz} + AtSs
= (PU)?+1/2,J'+1/2-
Finally, from (3.7), we have
(3.19)
Eﬁ:ﬁl/zjﬂ/z =Bl 0412 — % [Di((E + P)U)Z;rl/z + DI ((E+ P)U)Zﬁ{z]

_ At
2
Again, (3.15) implies that S4 = 0, and (3.19) becomes

[Di((E +p)o)i T2 4 DY (B + p)v)?jﬁf] + AtS,.

n+1 _ n
i+1/2,5+1/2 = Ti41/2,541/2¢

n+1

/2,412 is equal to the forward

0

Thus, we conclude the updated numerical solution u

n+1

. . . n o o
projected solution at time t", i.e., W iv12 = Wik o i1/
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Next, we extend the surface gradient method to two-dimensional central schemes
for the Euler equation with gravity systems in order to perform the forward and
backward projection steps. As in the one-dimensional case, we introduce the new
function H"(z,y) = p"™(z,y) — p°(z,y), where p°(z,y) = exp(—gi1x — goy) is the
steady state density. Then we calculate (p;;")" and (p;’’)" indirectly using the newly

introduced function H}; as (p;'}")" = (H;';")" + (p;7) and (p}'}") = (H'}")' + (077
using a limiting procedure of numerical gradients. Recall that this is only necessary
for the forward projection step of p}';, i.e., for the calculation of pj', /2,j41/2 through
equation (3.8). We assume that p® is initially given at the cell interfaces, i.e., the

Pi1 /2,j41/2 are known and then we define the cell centered values to be

S 1 —S —S
(3.20) Pij =35 (P<i>7j71/2 + p<i>7j+1/2)
and then we define the function H(z,y) as

H™(x,y) = Hpj + (H;3") (@ — @) + (H3) (v = 95),

where VH]; = ((H;';")', (H;"}")’) is a limited numerical gradient of H;'; Next, we
calculate the numerical spatial partial derivatives of p;’ ; as follows:

n,xr n,x 1 s s
(3.21) (1) = HEY + 5 (1o a2 + [0y o2
and
3 22 n,Y i _ H’I’Lﬂ/ /+ 1 |I HS + |I HS
(3.22) (pi,j ) =( i,j ) —2Ay Pli+1/2,35) Pli-1/2,G5) ) -

Note that in the case of an equilibrium solution u;’; only the values of H;'; vanish but

not necessarily the values of H}',, , ;. o unless we correct the values of p ;5 .11/

in the back projection step while calculating the values of p"T! using (3.9). The

0,J
correction we apply in this work is as follows:
~s s Ll ﬁfi% —1/2 T ﬁfi% j+1/2
(3.23) Pit1/2,54+1/2 = Pit1/2,5+1/2 — ) Pit1/2,5+1/2 ~ ’ B ’

; fntl — ntl ~
and then we define the function Hf+1/27j+1/2 = p?+1/2)j+1/2 — Pit1/2,j41/2- Lhe

numerical spatial derivatives of p;:rllﬂ j+1/2 can now be indirectly computed using

the numerical gradient of I?Zfllm 12 88 follows:

N 6l onso + [P,
n+1,x o n+1,z (4),j+1/2 (i+1),5+1/2
(3.24) (pi+1/2,j+1/2)/ = (Hz'+1/2,j+1/2)/ AL

and similarly

o151 2,05y + [P17 412,551
2Ay '

n+1,1 _ gn+l,
(325) (pi+1/;/)j+1/2)l - (Hi+l/2y,j+1/2)l +

Note that the forward and backward projection steps of the energy component are
handled in a similar way.
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In the forward projection step we linearize the energy E7'; at time ¢" using the
function H; ; = E}'; — E7; and then calculate the spatial numerical derivatives as

follows:

n,T n,r 1 s s
(B = (H") + AL ([[Eﬂ(i),j+1/2 + [[E]](i)JJrl/z)

and

EY = 04 + 55 (Vs + Y1)

Here we assume that the E7 /2,j41/2 is the energy of the equilibrium solution and

is initially given at the cell’s corners and satisfying the equation E7 /2,j41/2

Piy1/2,54+1/2/ (v —1). We define the cell centered equilibrium state energy to be

s 1 =] =]
Bij=3 (E<i>7j71/2 + E<i>7j+1/2) :

For the back projection step the linearization is performed using the corrected values
of the equilibrium energy defined as follows:

s s 1 1 /—s —s
Eiviy201/2 = Eivryo i1y — B} |:Ez+1/2 /2 7T 5 (Ei+1/2,j + Ei+1/2,j+1):|'
n 1 ~5
Then we introduce the function H1+1/2 it1y2 = E1+1/2 ir12 ~ Eiyay2,j41/2 and calcu-

n+1
E1+1/2 j+1/2

derivatives of the discrete functions ’Hl 1/2,541/2 and ES as follows:

late the numerical spatial partial derlvatweb of indirectly using numerical

~ 1
n+1,x n+1l,x s s
(Ez+1/27j+1/2)/ = (Hi+1/2,j+1/2)/ + 29AT ([[E]](i>7j+1/2 + [[Eﬂ(iﬂ),jﬂ/?)

and similarly

~ 1
n+1, _ n+1, s s
(EH.l/zyj.H/Q)l - (Hi+1/g7j+1/2)l + 2Ay ([[Eﬂi+l/2,(j) + [[Eﬂi+l/2,(j+1)) :

To complete the derivation of the two-dimensional well-balanced central scheme for the
Euler equations with gravity system we still need to show that if the numerical solution

™. corresponds to an equilibrium state solution, then the updated solution u"Jrl

Wi j i,
n+l

remains as such, ie., uy; = u; Regarding this, we have the following theorem.
THEOREM 3.2. Let the appm:mmate solution u}'; of the Euler equation with grav-
ity system (3.3) be updated using the finite volume method (3.7) and (3.9) and under
the hypotheses of Theorem 3.1 along with the surface-gradient-based forward projection
step and backward projection step. Then the scheme (3.9) has the following properties:
(a) Accuracy: It is a second-order accurate approzimation of the Euler equation
with gravity system (3.3).
(b) Well-balanced: It preserves the steady state (3.2), i.e., if ul' satisfies (3.2)
then the updated solution u™' also satisfies (3.2).

Proof. A straightforward truncation error analysis shows that the local truncation
error is O(Az?) which confirms (a). To prove (b), we shall proceed componentwise
and show that p}!; = pf;rl and El'; = Ezn;rl Note that the equations puj’; = pu"jl
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and poi; = pu; ”*1 follow immediately because in the equilibrium state we have u;’
=0.
1‘)
In what follows, we first calculate the forward projected solution. Recall that
for both the first and fourth components of u}';, the forward projection step (3. 8) is
performed using the surface gradient method. The forward projection step of pj’;

time t" is performed using (3.8), (3.21), and (3.22) as follows:

(3.26)
Pty = % (P + pitry + Pl + Pi141)
i Ceaa
+ gz (Wi sy + D oy + i gy + Dl 09)
Ax

] (G
+ ﬁ ([[pﬂfiJrl),jf% + [[pﬂ‘(si+1))j+% + [[p]}fiﬂ))ﬂ% + [[p]]?iﬂ)&%))
e G
* ﬁ (o8- + DD )+ DDy ) + Dol )
?Gy((HfJil)/ + (HEY )

+ 557 (Eoy oy + By o ey o+ Dl 1)

Since at time ¢" the numerical solution u;’; corresponds to an equilibrium solution

then the relation H;'; = p;';—p; ; = 0 is maintained for all 7, j, and therefore all spatial
partial numerical derlvatlves of H H}'; in (3.26) are zero. Furthermore, (3.20) leads to

(3.27) L1551 + 100Gy 1 = 2 (( Pt o1 TP e ) - 2pf,j) :
M?i),ﬁ% + [[p]]fi)ﬁ% =2 (( Pivd jvi +pz+— g+d ) - 2Pf,j+1) :
[Pl sm g+ W0rnsng =2 (2000s = (ohigmy +Pi1g0g))
U151y 511 + [PDGiny 512 =2 (2Pz‘+17j+1 - (pf#;j% + Pf+%,j+g)) :
and, similarly, using (3.20) we get the following relations:
(3:28) Dol y + Doln) =2 (P s +A5aies) —2005).
[, 3 ) + 1PDiy s ) = 2 (( Pirygrs T Pivg j+d ) N 2pf+1’j) ’
[[p]]%f Gy T [[p]]l+ G = 2 (2 Pij+1 ( Pimt i T pf+%7j+%)) )
[[pﬂ1+1 G+ T [[p]]z+3 G+ = 2 (2p1+1 J+1 T ( Pivij+i T pf+%,j+%)) :

Substituting the relations (3.27) and (3.28) into (3.26) while taking into account
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H}; =0, we obtain

(3.29)

1 S S 1 S S S
16 ((pi+ g3 TPt~ 2”“) 16 ((pi+%)j+% tPiggee) T 2”131'“)

(2081501 = (i ges + Pl 40)
1
((pf—%,ﬂ% Py es) T pr,j) 16 ((pf+%,j+% P gee) - 2pf+1,j)

S S S
208 41— (01 j1 + pi-ﬂ,—%,j.;.%))

which simplifies leading to

(P3j + Pi + i1+ Piae)

e

1
Pyt ey = 7 LG+ P00l + Pl ) —
1
8(4p1+ J+1+pz+—3+3+p1+ J= +PZ__J+1+101+§,]+ )

Similarly, for the back _projection step (3.9), we follow the surface gradient method.

: : : rrn+1 n+1 ~s :
Keeping in mind that HZJrl/2 it1/2 = Pit1/2,541/2 ~ Piv1/2,j41/2 and using (3.24) and
(3.25) we get
(3.30)

1
nt+1 _ n+1 n+1 n+1 n+1
pz] Z (pl,_ j,_ +p7,+ - +p7, 1 j+l +pl+%7]+%)

AZE n+1l,x n+1l,x
+ - ((Hi—l/Z,j—1/2)/ + (Hi—l/Q,j+1/2)/

1
3, ([[p]] G-1),j—3 T 1P00 =y + [P0 1y ja g + (P00 1s ))
Ax n+1,x rrn+1l,x
- _((Hi+1/27j71/2) (Hz+1/2 ]+1/2)I
1 S S S S
+5az (B ioy + 10y oy + 00y + iy 50g)

Ay rrn+1, rrn+1,
+ - ((Hi—l/Zyj—l/2)/ + (Hi+1/2y,j—1/2)/

2Ay ([[p]]z_7 G-1 T [[P]L_, Gt [[P]]H G- T [[p]]z+1 (J)))

Ay n+1, n—+1,1
BT (( i71/3j+1/2) (Hz+1/2yj+l/2)/

o5 (P )+ Vg oy + Dl + Dl 1))
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Note that when Hi’j~: P — PP :NO, then H”++21 1= pzz::,ﬁé — ﬁ;%,ﬁ% remains
zero and therefore (HZZ:;’JZ 1 ) = (HZZ:;;?’JF 1 )’ = 05 (3.30) becomes
iy = ; (B4 +7002)
b5 (108 sy + Dy + 0 sy + D )
- 31_2 ([[p]]?i),j—% + [[pﬂfi+l),j—% + [[Pﬂ?i),ﬁ% + [[Pﬂ?iﬂ),ﬁ%)
t 31_2 (PR W 1 AR 1
_ 31_2 (R SRS /) PR /) R

which reduces to
(3:31) iyt = : (ﬁ(sim% +3€i),j+%>
116 (_fl DEES +p(1 ONES +p(z+l)7j7% +ﬁfi+1)7j+%)
* 1_16 (%w% P+t TP g-1 TP g )
116( Piy.G-1 FPiry G-y TPiog.G) +ﬁf+%,<j>)

1
+1_6( Pi-1,G) T Piss,) T Pi-1,G) T Piss, (J))

But from (3.20) we know that
— 1 S — 1 —S
(3:32) pi; =5 (P ( @i—1 TPl 43 ) Pi-15=73 (pu 1,1 +p<i71>,j+%) )
1 . 1
Pirii = 3 ( Pliv).i—t +Pli1) 44 ) Pij-1=3 (p%_ G-1) T Pisy <j71>)’

— DN

Pijt1 = B (pzf— G+1) TPk (j+1)) :
Thus (3.31) becomes
n 1 =5 1 s s s s s
(3.33) Pljl = (p(i),j—% + p(i),j+%) T (pi—l,j + Piy1 T Pij—1 Tt Pijy1 — 4pi,j>'
On the other using (3.23) we write the following equations:
ﬁf+1/27j+1/2 =

(4p1+2j+1 +,0H_ J+3 —|—pl+_j__—|—pl__j+1 +pl+3j+1

~s _ S S S
Pi-1/2.4-1/2 = (4'01'—%4'—% Py Py TP T Py

= 0ol — 0o =

1

] — S S S S S
Pi-1/2,j+1/2 = 3 (4pi—%,j+§ TPy j+s TPt -1 T Pig s Pz‘+%,j+§) )
S — S S S S S
Pit1/2,j-1/2 = 3 (4pi+%,j—% Thiviget TP TPy 1t F’z‘+%,j—%>

Adding these together and using the relations in (3.32), we obtain

=s =5
(p(i),jfé + p(i),jJr%) 16 (41017] 1 + 4pz 1,5 + 4pz ,J+1 + 4pz+1 \J + 16pz j)

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/18/19 to 129.2.11.52. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

B796 R. TOUMA, U. KOLEY, AND C. KLINGENBERG

Therefore (3.33) becomes

1
Pt = o [4Pf,j—1 +4pi_1; +4p5 1 + 40T+ 160?,3}

321

3 (pijfl TPy P+ P 4Pf7j)
(3.34) — ot = ol
This means that if the numerical solution p}'; at time ¢" is an equilibrium state
solution, then the updated solution p?_;rl is such that p?_;rl = pij.

To keep the presentation fairly short we have only provided details for the com-
ponent p. However, the proofs for the component E are similar and we omit the
proofs for brevity in the exposition. Hence, combining all the results, we conclude

n+l _ ..n
that v}/ = u?,. O

4. Numerical experiments. The fully discrete finite volume schemes devel-
oped in sections 2 and 3 have been tested on suitable numerical experiments in order
to demonstrate their effectiveness.

4.1. One-dimensional experiments. We first validate the one-dimensional
well-balanced central scheme for the Euler equation with gravity equations and solve
some classical problems from the recent literature. In what follows, we compare our
results with the numerical results of a fifth-order well-balanced finite difference WENO
(weighted essentially nonoscillatory) method given in [16]. Note that, as is the case
in central finite volume methods, and for stability purposes of the numerical scheme,
the time step At is dynamically calculated using the eigenvalues Ax, k = 1,...,p of
the Jacobian matrix df(u)/0u as follows:

Az
max(|Ax|)’
where 0 < CFL < 0.5 is the Current—Friedrichs-Lewy stability parameter.

At=CFL

4.1.1. Shock tube under gravitational field. We consider, for our first nu-
merical experiment, Sod’s standard shock tube problem with gravitational field (1.2)
as considered in [16]. The computational domain is the interval [0,1], and the initial
conditions feature two constant states U; = [1,0,1] if # < 0.5 and U, = [0.125,0,0.1]
if > 0.5, where U = [p, u,p]. The gravitational field ¢ is such that ¢, = g = 1 and
the gas adiabatic constant 7y is equal to 1.4. The well-balanced scheme is applied with
reflective boundary conditions, and the numerical solution is computed at time ¢t = 0.2
on 100, 200, and 400 grid points. The obtained results are reported in Figure 1 where
we plot the pressure, density, momentum, and velocity. It is worth mentioning that
the obtained numerical results are in good agreement with those presented in [16] in
the sense that we also see that due to the gravitational force, the density distribution
is pulling towards the left direction, and negative velocity appears in some regions.
In order to validate the proposed numerical scheme we solved this same shock tube
problem but with zero gravity; the resulting problem is the classical Sod shock tube
problem. The obtained numerical solution at the final time time ¢; = 0.164 using the
proposed scheme (dotted curve) are compared to the exact solution (solid curve) of
the Riemann problem and are reported in Figure 2.

4.1.2. Isothermal equilibrium solution. In this experiment, we validate the
well-balancing property of the proposed scheme. This test case was initially pro-
posed by LeVeque and Bale in [13] and later considered in [18] and [19] in order to
demonstrate the capability of the numerical scheme to capture small perturbations
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Fic. 2. Solution of the one-dimensional Sod shock tube problem without gravity at time t = 0.164.

of a steady state. The computational domain is the interval [0, 1], and a linear grav-
itational field is considered with ¢, = g = 1 . Furthermore, we assume an ideal gas
with constant v = 1.4; the corresponding isothermal equilibrium solution is, therefore,
p(x,t) = po(z) = exp(—x), p(x,t) = po(x) = exp(—2z), and up(z) =0 for all z, t > 0.
The initial conditions are taken to be exactly the same as the steady state solution;
we compute the numerical solution on 200 grid points until the final time ¢ = 0.25.
Figure 3 shows the profile of the density p (top left), momentum (top right), energy
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F1c. 3. Solution of the one-dimensional equilibrium state problem at time t = 0.2 on 200 grid
points.

TABLE 1

LY errors.
N Lyerror p | Order Ljerror pu | Order Ljyerror pE | Order
100 3.48E-15 1.90E-15 7.22E-13
200 9.39E-16 1.89 5.25E-16 1.86 1.97E-13 1.87
400 2.33E-16 2.01 1.34E-16 1.97 5.01E-14 1.98

(bottom left), and pressure (bottom right) obtained using the proposed well-balanced
scheme (dotted curve); the reference solution (solid curve) is the graph of the exact
solution (steady state solution). The numerical solution remains a good match with
the reference solution, thus confirming the well-balancing property of the proposed
scheme. From the graph of the momentum, we see that the solution curve remains
stationary with a velocity that does not exceed 2 x 107'° in absolute value. The L!
error and the order of convergence of the mass density and pressure on an increasing
mesh were computed; the obtained results reported in Table 1 validate the order of
convergence of the numerical scheme. Moreover, we see that L! errors are comparable
with the L! errors presented in [16, Table 5.1].

4.1.3. Perturbation of an equilibrium solution. Our next experiment fea-

tures a perturbation of the equilibrium state to demonstrate the effectiveness of our
scheme. The perturbation is imposed on the initial pressure and the initial conditions
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F1G. 4. Perturbation of an equilibrium state; profile of the pressure disturbance at time t = 0.2
on 100 and 200 grid points.

are set as follows:

p(z,t =0) = po(z) = exp(—z),
p(x,t = 0) = po(x) = exp(—x) + nexp(—100(z — 0.5)*),

and the initial velocity is u(z,t = 0) = ug(z) = 0. As in [16] we set n = 0.01 and
compute the numerical solution until time ¢ = 0.25 on 200, 400 grid points. The
disturbance due to the perturbation splits into two waves propagating towards the
endpoints of the computational domain where simple transmissive boundary condi-
tions are set. The obtained results are shown in Figure 4, where we plot the pressure
perturbation. Moreover, these results confirm that our method is good enough to
capture small as well as large perturbations with a coarse mesh of 200 mesh points.
We have also compared the numerical results obtained using our proposed scheme
to those obtained using a well-balanced approximate Riemann solver [5] especially
designed for the Euler equations with gravitation on 20,000 points. The comparison
is reported in Figure 5 where we show the graph of the pressure perturbation on 100
grid points (dotted-dashed curve), 200 grid points (dotted curve), and the reference
solution obtained on 20,000 grid points (solid curve). A good agreement between the
results is observed in Figure 5. Figure 6 shows the profile of the pressure disturbance
of the same problem obtained using n = 0.0001. We note also that the Riemann-
solver-free nature of our scheme allows us to avoid the resolution of the Riemann
problems arising at the cell interfaces, as compared to [5].

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/18/19 to 129.2.11.52. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

B800 R. TOUMA, U. KOLEY, AND C. KLINGENBERG

x 10
15 T T T T T T T T T
O 100 grid points
200 grid points
— — —initial perturbation
Reference solution
10 B VRN n

Pressure Perturbation

_5 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X

Fic. 5. Perturbation of an equilibrium state; profile of the pressure disturbance at time t = 0.2
on 100 and 200 grid points. The reference solution was obtained on a fine grid using the method
described in [5].

4.2. Two-dimensional experiments. We now validate the two-dimensional
well-balanced central scheme we developed for the Euler equations with gravity and
solve classical problems from the recent literature.

4.2.1. Two-dimensional shock tube problem. This experiment features a
two-dimensional extension of the shock tube problem considered in [16]. The com-
putational domain is the square [0,1]?, and the initial conditions feature two con-
stant states U; = [1,0,0,1] if x < 0.5 and U, = [0.125,0,0,0.1] if 2 > 0.5, where
U = [p,u,v,p]. The numerical solution of system (3.3) is computed at the final time
ty = 0.2 using reflective boundary conditions, and the obtained numerical results are
reported in Figure 7 where we show the profiles of the mass density (left) and the
pressure (right) along the z-axis (solid curve); the solution of the corresponding one-
dimensional problem, also shown in the graphs, and both one- and two-dimensional
schemes show a good agreement.

4.2.2. Isothermal equilibrium solution and order of convergence. This
test case is used to validate the well-balanced property of the proposed two-dimensional
scheme, i.e., its capability of maintaining equilibrium states at the discrete level. As
in [16], we consider for our computational domain the unit square [0, 1]%, we set the
gas constant v = 1.4, and we set g1 = g2 = 1. The isothermal equilibrium state under
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F1G. 6. Perturbation of an equilibrium state; p
on 50, 100, and 200 grid points.
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Fic. 7. Two-dimensional shock tube problem:

z-axis of the two-dimensional solution versus the
computed on 200 grid points.

consideration then takes the form

rofile of the pressure disturbance at time t = 0.25

—— 2D transect
O 1D solution

Pressue transect

comparison between a cross section along the
solution of the one-dimensional problem, both

p(x,y) = poexp <_g_2(91x + 922/)) w(z,y) =v(z,y) =0,

Po
p(z,y) = poexp (—p—o(glx +

923/))

with the parameters pyp = 1.21 and py = 1. We set the initial conditions to be exactly
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Fic. 8. Profiles of the pressure at the final time (left), and the pressure’s deviation from its
steady state (Tight) on 60 X 60 grid points.

TABLE 2
LY errors.

N LTerror p | Order [[ Lterror pu | Order || LTerror pv | Order [[ Llerror pE | Order
102 || 1.757 e-03 6.916e-08 6.916e-08 3.631e-03
202 4.436e-04 | 1.986 1.693 e-08 | 2.030 1.693e-08 2.030 9.166e-04 1.986
402 1.112e-04 | 1.997 4.209e-09 2.008 4.209e-09 2.008 2.297-04 1.997

the equilibrium state solution of the problem and we compute the numerical solution
on 60 x 60 grid points. The obtained numerical results at time ¢ty = 0.25 are reported
in Figure 8 showing the profile of the pressure at the final time (left) and the pressure’s
deviation from its equilibrium state (right). Figure 8 (right) shows that the obtained
numerical solution satisfies the steady state requirement at the discrete level and the
pressure remains within 10~7 from its equilibrium state value, thus confirming the
capability of the proposed scheme to handle the problem of equilibrium state solution
for the Euler equation with gravity system. The L! error and the order of convergence
of the mass density and pressure on an increasing mesh were computed; the results
obtained are reported in Table 2. They validate the order of convergence of the
numerical scheme.

4.2.3. Perturbation of an isothermal equilibrium solution. In this test
case, we introduce a perturbation to the equilibrium problem. We follow the same
configuration as in the previous test case, as well as in [16] and we consider the
pressure perturbation

0
p(z,y,t =0) = poexp <_Z_O(le + gzy))

100
+ nexp (— popo (g1 — 0.3)* + (goy — 0.3)2))

centered at the point (0.3,0.3) with 1 the nonzero parameter and set as 0.001 in this
experiment. We compute the numerical solution until time ¢ty = 0.15 on 50 x 50
grid points and we consider simple transmissive boundary conditions. The obtained
numerical results are reported in Figure 9 where we show the profile of density per-
turbation (left) and its contour lines (right) and in Figure 10 where we show the
profile of the pressure perturbation (left) and its contour lines (right). The obtained
numerical results are in good agreement with those presented in [16], thus confirming
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F1G. 9. Profile of the perturbation of an equilibrium state; density disturbance at time t = 0.25
on 50 X 50 grid points.
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F1G. 10. Profile of the perturbation of an equilibrium state; pressure disturbance at time t = 0.15
on 50 X 50 grid points.

the potential of the proposed scheme to handle small perturbations of equilibrium
solutions.

4.2.4. Unidirectional perturbation of an equilibrium solution. In this
test case, we consider a two-dimensional extension of the one-dimensional pertur-
bation problem of an equilibrium state considered previously. We consider for our
computational domain the unit square which we discretize using 50 grid points. A
unidirectional gravitational field is considered with constants g1 = 1 and go = 0. The
corresponding isothermal equilibrium solutions for the density and the pressure are
p(z,y,t) = po(x,y,t = 0) = exp(—g1z) and p(z,y,t) = po(z,y,t = 0) = exp(—g12),
respectively. The initial conditions are set to be the equilibrium solution for the
density, u = v = 0, and a small perturbation of the equilibrium pressure defined by

po(x,y,t = 0) = exp(—g17) + nexp(—100(z — 0.5)?)

with 7 = 0.001. The numerical solution is computed at the final time ¢; = 0.25, and
the obtained results are reported in Figure 11 where we show the density perturbation
(left) and the pressure perturbation (right). A comparison between a cross section
along the line y = 0.5 of the pressure perturbation (dotted curve) and the solution of
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F1c. 11. Profile of the pressure perturbation of the equilibrium state problem obtained at time
t = 0.25 on 50 x 50 grid points.
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F1G. 12. Cross section of the pressure perturbation along the line y = 0.5 obtained using the
two-dimensional numerical scheme (o markers); the solid curve is the solution of the corresponding
one-dimensional problem with n = 0.001.

the corresponding one-dimensional problem (dashed curve) is given in Figure 12; both
curves are in good agreement with the reference solution (solid line) obtained using the
solver developed in [5] on 20,000 grid points, thus confirming the potential of the pro-
posed schemes to handle the two-dimensional Euler equation with gravity problems.

4.2.5. Circular Riemann problem. For the final experiment, we consider
a circular Riemann problem subject to a gravitational field. The computational
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1=0.0724 t=0.144

Density

F1c. 13. Clircular Riemann problem: profile of the density at time t = 0.0724 (left) and t = 0.144
(right) on 50 x 50 grid points. Two circular shock waves are propagating outward and an rarefaction
wave 1s moving towards the center of the computational domain to form a downward shock wave.
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F1G. 14. Circular Riemann problem: profile of the density at the final time ty = 0.2 (left) and
two cross sections of the density along the line y = = obtained on 60° and 200% grid points.

domain is the unit square, and the initial conditions feature two constant states
Uin. = |p, pu, pv, E] = [1,0,0,1] and U, = [0.125,0,0,0.1] separated by the circle
centered at the point (0.5,0.5) with a radius » = 0.1. The gravitational constants
are g1 = g2 = 1. The numerical solution is computed at the final time ¢; = 0.2 using
the proposed well-balanced scheme and the obtained results on 502 grid points are
reported in Figures 13 and 14 (left) where we show the profiles of the mass density
at different times. The solution at time ¢t = 0.0742 (Figure 13 (left)) shows two
circular shocks propagating outward and a rarefaction wave is propagating towards
the center of the computational domain. The shock waves are further developed at
time ¢ = 0.144 (Figure 13 (right)) and the rarefaction is about to become a down-
ward shock wave. Figure 14 (left) shows the profile of the density at the final time
ty = 0.2. Figure 14 (right) shows two cross sections of the mass density along the line
y = x obtained on 602 and 200? grid points. Both curves are in good agreement thus
confirming the potential of the proposed scheme to handle the Euler equation with
gravity problems.

5. Conclusion. In this work we developed a well-balanced unstaggered central
finite volume method for the numerical solution of systems of Euler equations with
gravity in one- and two-space dimensions. The proposed method is shown to satisfy
exactly the isothermal equilibrium at the discrete level and is characterized by its
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simplicity. In fact the proposed method avoids the resolution of the Riemann problems
arising at the cell interfaces thanks to staggered dual cells intermediately used while
updating the numerical solution. Careful projections of the updated solutions back
onto the original cells retrieves the solution values at the cell centers. To ensure
well-balancing, sensor functions are carefully used to discretize the source term of the
Euler equation with gravity system according to the discretization of the divergence of
the flux function; furthermore a special adaptation of the surface gradient method is
employed for the forward and backward projections of the linearly defined numerical
solution. The proposed scheme is then validated and successfully applied to solve
classical problems arising in the recent literature; the obtained numerical results are
in very good agreement with their corresponding ones appearing in the literature thus
confirming the potential of the proposed schemes to handle isothermal systems of the
Euler equation with gravity equations for gas dynamics.
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